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Human blood plasma can be obtained relatively noninva-
sively and contains proteins from most, if not all, tissues
of the body. Therefore, an extensive, quantitative catalog
of plasma proteins is an important starting point for the
discovery of disease biomarkers. In 2005, we showed that
different proteomics measurements using different sam-
ple preparation and analysis techniques identify signifi-
cantly different sets of proteins, and that a comprehensive
plasma proteome can be compiled only by combining
data from many different experiments. Applying advanced
computational methods developed for the analysis and
integration of very large and diverse data sets generated
by tandem MS measurements of tryptic peptides, we have
now compiled a high-confidence human plasma pro-
teome reference set with well over twice the identified
proteins of previous high-confidence sets. It includes a
hierarchy of protein identifications at different levels of
redundancy following a clearly defined scheme, which we
propose as a standard that can be applied to any pro-
teomics data set to facilitate cross-proteome analyses.
Further, to aid in development of blood-based diagnostics
using techniques such as selected reaction monitoring,
we provide a rough estimate of protein concentrations
using spectral counting. We identified 20,433 distinct pep-
tides, from which we inferred a highly nonredundant set of
1929 protein sequences at a false discovery rate of 1%.
We have made this resource available via PeptideAtlas, a
large, multiorganism, publicly accessible compendium of
peptides identified in tandem MS experiments conducted

by laboratories around the world. Molecular & Cellular
Proteomics 10: 10.1074/mcp.M110.006353, 1–14, 2011.

Blood plasma contains a combination of subproteomes
derived from different tissues, and thus, it potentially provides
a window into an individual’s state of health. Therefore, a
detailed analysis of the plasma proteome holds promise as a
source of biomarkers that can be used for the diagnosis and
staging of diseases, as well as for monitoring progression and
response to therapy.

For many years, before the era of proteomics, the classic
multivolume reference, The Plasma Proteins by Frank Putnam
(1975–1989) (1), provided a foundation for studies of plasma
proteins. In 2002, Anderson and Anderson (2) published a
review of 289 plasma proteins studied by a wide variety of
methods, and quantified primarily with immunoassays, pro-
viding an early plasma proteome reference set.

Subsequently, the widespread adoption of liquid chroma-
tography-tandem MS (LC-MS/MS)1 techniques resulted in a
rapid increase in plasma proteome-related data sets that
needed to be similarly integrated to form a next-generation
comprehensive human plasma proteome reference set. In
2002, the Human Proteome Organization (HUPO) launched
Phase I of its Human Plasma Proteome Project (PPP) and
provided reference specimens of serum and EDTA-, citrate-,
and heparin-anticoagulated plasma to 55 laboratories. Eight-
een laboratories contributed tandem MS findings and protein
identifications, which were integrated by a collaborative pro-
cess into a core data set of 3020 proteins from the Interna-
tional Protein Index (IPI) database (3) containing two or more
identified peptides, plus filters for smaller, higher confidence
lists (4, 5). A stringent re-analysis of the PPP data, including
adjustment for multiple comparisons, yielded 889 proteins (6).
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Meanwhile, in 2004, Anderson et al. (7) published a com-
pilation of 1175 nonredundant plasma proteins reported in
the 2002 literature review and in three published experimen-
tal data sets (8–10). Only 46 were reported in all four
sources, suggesting variability in the proteins detected by
different methods, high false positive rates because of in-
sufficiently stringent identification criteria, and nonuniform
methods for assigning protein identifications. Shen et al.
(11) reported 800 to 1682 proteins from human plasma,
depending on the proteolytic enzymes used and the criteria
applied for identification; Omenn et al. (4) re-analyzed those
raw spectra with HUPO PPP-I search parameters and
matched only 213 to the PPP-I core data set. Chan et al.
reported 1444 unique proteins in serum using a multidimen-
sional peptide separation strategy (12), of which 1019
mapped to IPI and 257 to the PPP-I core data set. These
previous efforts highlight the challenges associated with
accurately determining the number of proteins inferred from
large proteomic data sets, and with comparing the proteins
identified in different data sets.

In 2005, we used a uniform method based on the Trans-
Proteomic Pipeline (13) to create the first Human Plasma
PeptideAtlas (14), containing 28 LC-MS/MS data sets and
over 1.9 million spectra. Using a PeptideProphet (15) proba-
bility threshold of p � � 0.90, 6929 peptides were identified at
a peptide false discovery rate (FDR) of 12%, as estimated by
PeptideProphet’s data model, mapping to about 960 distinct
proteins. Comparison of protein identifiers with those from
studies cited above showed quite limited overlap.

From the 2005 Human Plasma PeptideAtlas, as well as the
PPP-I collaboration, we concluded that different proteomics
experiments using different samples, depletion, fractionation,
sample preparation, and analysis techniques identify signif-
icantly different sets of proteins. We decided that a com-
prehensive plasma proteome could be compiled only by
combining data from many diverse, high-quality experi-
ments, and strove to collect as much such data as possible.
The resulting 2007 Human Plasma PeptideAtlas (unpub-
lished), encompassing 53 LC-MS/MS data sets, identified
27,801 distinct peptides—four times the number in the 2005
Atlas—and 2738 proteins.

In 2008, Schenk et al. (16) published a high-confidence
set of 697 nonimmunoglobulin human plasma proteins
based on measuring a single pooled sample on two high-end
MS instruments after depletion, prefractionation, and protease
inhibition, with stringent validation methods. This highly nonre-
dundant set of proteins likely contains fewer false-positives than
any previous MS-derived plasma proteome reference set.

The goal of the present work was to compile a larger
human plasma proteome reference set of similar high con-
fidence by creating a new release of the Human Plasma
PeptideAtlas incorporating more data than in 2007 and
interpreting the data using more stringent criteria. We
searched raw data sets submitted to PeptideAtlas and per-
formed peptide validation using a uniform pipeline (Fig. 1),
compiled several sets of corresponding protein identifica-
tions at different clearly defined levels of redundancy (Fig.
2), and, using a spectral counting technique, provided a

FIG. 1. Left: Search, analysis, and validation steps for each LC-MS/MS experiment. Spectra were searched against a spectral library or
sequence database. The resulting PSMs were then processed using the TPP, including a new component, iProphet, to improve discrimination
(see text for details). Right: The PeptideAtlas build process. ProteinProphet combines PSMs passing the FDR threshold for all experiments to
create lists of distinct peptides, protein identifications, and protein groups. These data, along with supporting information such as consensus
spectra, genome mappings, and proteotypic peptides, comprise a PeptideAtlas build.
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rough estimate of concentrations for a highly nonredundant
set of protein sequences to guide blood-based diagnostic
efforts such as doping using stable isotope-labeled syn-
thetic reference peptides for selected reaction monitoring
(SRM) experiments (Fig. 3). The result is a plasma proteome
reference set (Fig. 4) (supplemental Tables S3 and S6) con-

taining 1929 highly nonredundant protein sequences at an
estimated 1% FDR.

EXPERIMENTAL PROCEDURES

Searching of Data Sets—We collected raw spectra from 91 high-
quality LC-MS/MS data sets ((4, 12, 17–21) and several unpublished;

FIG. 2. A, Six shaded bars (two of which overlap) represent sets of protein identifications at various levels of redundancy under the
Cedar scheme. Tallies are for the Human Plasma PeptideAtlas. Beginning at bottom: ●Exhaustive set: contains any protein sequence in the
atlas’ combined protein sequence database (Swiss-Prot 2010–04 � IPI v3.71 � Ensembl v57.37) that includes at least one identified peptide.
●Sequence-unique set: exhaustive set with exact duplicates removed. ●Peptide-set-unique set: a subset of the sequence-unique set within
which no two protein sequences include the exact same set of identified peptides. ●Not subsumed set: peptide-set-unique set with subsumed
protein sequences removed (those for which the identified peptides form a proper subset of the identified peptides for another protein
sequence). ●Canonical set: a subset of the not subsumed set within which no protein sequence includes more than 80% of the peptides of
any other member of the set. Protein sequences that are not subsumed, but not canonical are called possibly distinguished, because each has
a peptide set that is close, but not identical, to that of a canonical protein sequence. ●Covering set: a minimal set of protein sequences that
can explain all of the identified peptides.

B, Peptide-centric illustration of six protein sequences in a hypothetical ProteinProphet protein group, in order of descending ProteinProphet
probability. Heavy lines represent protein chains (with invented identifiers); lighter lines represent observed peptides. Vertically aligned peptides
are identical in sequence, and one instance of each is labeled with the letter of the highest probability protein to which it maps. A’ is
indistinguishable from A because it contains exactly the same set of observed peptides; both are equally likely to exist in the sample(s), but
A is labeled canonical because its Swiss-Prot protein identifier is preferred. E is subsumed by A because its observed peptides form a subset
of A’s peptides; it is also subsumed by A’, C, and D. Protein sequences B, C, and D are labeled possibly distinguished because the peptide
set for each is slightly different from that of A. The three protein sequences with superscript C comprise the smallest subset of sequences
sufficient to explain all the observed peptides in the group, and thus belong to the covering set.
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supplemental Table S4, Supplemental Data), including 44 from Phase
I PPP experiments, 13 from PPP Phase II, the Chan data set, and
several from corporate research laboratories. Data from both plasma
and serum samples, a variety of sample preparation techniques (de-
pleted/not depleted, various fractionation schemata, use of protease
inhibitors, N-linked glycocapture enrichment (22)), and analysis on a
variety of instruments were included. All samples were digested with
trypsin. Each data set consisted of between one and 38,252 LC-
MS/MS runs (median 22) for a total of 48,789 LC-MS/MS runs2. For
analysis, we separated the data sets into two groups, glycocapture
and nonglycocapture, and later combined the results.

The 69 data sets for the nonglycocapture samples were all selected
from ion trap experiments because we wished to search them against
an ion trap spectral library. Data were converted to mzXML (23) and
searched with SpectraST version 4.0 (24) against a spectral library
consisting of the NIST 3.0 human spectral library (261,777 consensus
spectra) (25) plus one SpectraST-generated (26) decoy for each NIST
spectrum. This library contains consensus spectra derived from actual
identified spectra, some of which include missed cleavages and/or
modifications. A precursor mass tolerance of 3.0 Th (thomson) was
used. See supplemental Data for complete SpectraST parameters.

Analysis and Validation of Search Results—The search results for
each experiment were processed using the Trans-Proteomic Pipeline
(TPP) (13), as shown in Fig. 1, left (see supplemental Data for TPP
parameters used). PeptideProphet (15) computed a probability for
each peptide-spectrum match (PSM) for peptides of length seven or
greater. iProphet (27) was applied to the PeptideProphet results to

improve discrimination by modeling five additional properties of the
data beyond those modeled by PeptideProphet, and adjusting pep-
tide probabilities accordingly. The five models are number of sibling
searches (rewards or penalizes identifications based on the output of
multiple search engines, not applicable here), number of replicate
spectra (models the assumption that precursor ions with multiple high
probability identifications are more likely to be correct), number of
sibling experiments (models the assumption that precursor ions ob-
served in multiple experiments and matched to the same peptide
sequence are more likely to be correct), number of sibling ions (re-
wards peptides identified by precursors with different charges), and
number of sibling modifications (rewards peptides identified with
different mass modifications).

RefreshParser mapped each PSM to a combined protein sequence
database derived from Swiss-Prot 2010–04 including splice variants
(28, 29), IPI v3.71, Ensembl v57.37 (30), and cRAP v1.0 (31). In many
cases, the exact same protein sequence is included in the combined
database multiple times because it is contained in multiple databases
and/or because the Ensembl database includes many duplicates.
Each PSM was mapped to all protein sequences containing the
PSM’s peptide sequence; in many cases this resulted in a PSM
mapping to multiple protein sequences that are duplicates, splice
variants, or paralogs.

For very large data sets, the FDR at the peptide level tends to be
much larger than that at the PSM level, and, at the protein level, much
larger still (32). Thus, in order to obtain a 1% decoy-estimated protein
FDR for the final Human Plasma PeptideAtlas, a stringent PeptidePro-
phet-estimated PSM FDR filter of 0.0002 (corresponding to proba-
bility cutoffs ranging from 0.9903 to 0.9998) was applied to each
experiment.

2 This total includes two extraordinarily large experiments together
comprising 45,160 runs.

FIG. 3. Plasma protein concentrations determined using immunoassay and antibody microarray analysis (40) versus normalized
spectral counts from the Human Plasma Non-glyco PeptideAtlas, plotted on a log scale. Each small square represents a protein found
in both sources. Hollow squares represent proteins that were excluded when drawing the trend line (either depleted (albumin) or fewer than
four spectrum counts). The line segments above and below the trend line are fit to the standard deviation of the y axis values computed at
intervals of 0.1 (log scale). The arrows on the left represent proteins with reported concentrations in (40) but no spectrum counts. The histogram
at the right depicts an estimate of the completeness of the Human Plasma Non-glyco PeptideAtlas as a function of concentration,
calculated as the number of points divided by the total number of points and arrows within each decade. See supplemental Fig. S2,
for N-Glyco atlas.
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ProteinProphet (33) was then run on each experiment, assigning to
each distinct peptide the probability of its highest probability PSM,
and further adjusting these probabilities using a number of sibling
peptides model, which rewards peptides that map to proteins with
many identified peptides.

The set of identified peptides for the HsSerum NCI Large Survey
experiment (12) was found to contain many peptides that map to
yeast but not human. Suspecting yeast contamination, we purged the
peptide set for this experiment of all peptides that appear in the yeast
genome.

Next, ProteinProphet was run again, this time combining the PSMs
for all experiments, to assign probabilities to protein identifications
and to group protein identifications with overlapping peptide sets.
The PSMs passing threshold for all experiments and their corre-
sponding distinct observed peptides and protein identifications were
then compiled (Fig. 1, right) to form a Human Plasma Non-glyco
PeptideAtlas build.

Classification of Protein Identifications—It is impossible to generate
a definitive list of identified proteins because such a list depends on
what is meant by “protein” and on what one considers sufficient
evidence for the existence of a specific protein. Further, when the set
of identified peptides mapping to the sequence of a protein is iden-
tical to, or a subset of, the set of peptides mapping to the sequence
of another protein, it is quite possible that both proteins have been
observed, but there is no way to determine this from the data.

To partially address this issue, we compiled several sets of protein
identifications for this build at different levels of redundancy. For the
purpose of this work, the redundancy of a set of protein identifications
is the extent to which the set contains more sequences than neces-
sary to reasonably explain all of the data. Note that redundancy is
different from confidence and that the different redundancy levels do
not correspond to different confidence levels. The four most useful
protein sets are described below; the first two, exhaustive (most
redundant) and canonical (least redundant), are used extensively
throughout this report. All sets are summarized in Fig. 2, and a

detailed explanation, including examples, is given in supple-
mental Data (Cedar). We have named this scheme Cedar to capture
the somewhat tree-like pyramidal shape shown in Fig. 2A.

The exhaustive set includes any entry from the combined protein
sequence database (Swiss-Prot 2010–04 � IPI v3.71 � Ensembl
v57.37) to which any identified peptide maps. This highly redundant
set includes multiple copies of identical sequences. To determine
whether a protein corresponding to a particular identifier exists in the
Human Plasma PeptideAtlas, one must check whether that identifier
is in the exhaustive set. Assuming the identifier is in Swiss-Prot
2010–04, IPI v3.71, or Ensembl v57.37, its presence in the atlas’
exhaustive set indicates that the protein sequence includes a peptide
sequence in the atlas.

The canonical set is a highly nonredundant set of protein se-
quences explaining nearly all of the identified peptides and it serves
as a proteome reference set. It includes the highest probability protein
sequence from each ProteinProphet protein group, called the group
representative. Swiss-Prot protein sequences are preferred for inclu-
sion because of Swiss-Prot’s comprehensive sequence documenta-
tion and curation, and because Swiss-Prot, a subset of Uniprot, is
now considered to contain one entry for each currently known human
protein coding gene (34), with a total of 20,251 entries in the 2010–10
release, of which 13,329 have evidence at the protein level [www.
uniprot.org]. When a protein group includes protein sequences for
which the peptide set has less than 80% overlap with the group
representative, we label those sequences canonical as well (see
supplemental Data (Cedar) for algorithm and justification for 80%
threshold). The size of the canonical set is a conservative estimate of
the number of distinct proteins observed. It is important to under-
stand that the label canonical is with respect to a particular data
collection; a protein sequence that is identified in two atlas builds may
be labeled canonical in one collection and something else in another.

The possibly distinguished set includes protein sequences that
have one or more peptides distinguishing it from all protein se-
quences in the canonical set, but with these peptides comprising

FIG. 4. Proteins identified by each experiment. Each bar represents one of the 91 experiments, ordered as in supplemental Table S4.
Height of dark bar � canonical protein sequences identified per experiment; total height (dark � light) � cumulative tally; width of bar � PSM
count. See supplemental Fig. S5, for a similar graph of distinct peptides.
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fewer than 20% of the total number of identified peptides in each
protein, making the case for independent existence less strong.

Finally, the covering set is a near-minimal set sufficient to explain all
of the peptide identifications (see supplemental Data, (Cedar), for
algorithm). This set consists of almost all of the canonical protein
sequences plus some of the possibly distinguished protein se-
quences, and is usually somewhat larger than the canonical set. It is
useful for assigning a “parent” protein identification to each identified
peptide, as is necessary for estimating FDR using Mayu (32) or
computing the empirical observability score described in Empirical
Observability Score below.

See supplemental Data (Cedar) for settings to apply when using the
PeptideAtlas web interface to obtain these protein sequence sets.

Analysis of N-linked Glycopeptide-enriched Samples—We then an-
alyzed the 22 data sets from samples prepared using N-linked gly-
cocapture enrichment. Our aim in including these samples was to
detect low-abundance proteins, many of which are N-glycosylated.
Sample preparation was as described in (35). Briefly, N-linked glyco-
proteins were conjugated to a solid support using hydrazide chem-
istry, proteins were digested with trypsin on the support, N-linked
glycopeptides were optionally labeled with stable isotopes, and for-
merly N-linked glycosylated peptides were specifically released via
peptide-N-glycosidase F (PNGase F) resulting in a N-linked glyco-
peptide-rich fraction, but with the glycans removed. Within this frac-
tion, all asparagines (N) that had been glycosylated in the intact
protein were now present as aspartic acid (D) residues. This fraction
was analyzed via LC-MS/MS. We did not search against the NIST
spectral library because it does not contain glycopeptide spectra;
instead, data were searched with X!Tandem version 2009.10.01.1 (36)
using a score plug-in implementing the COMET (k-score) function (13)
against a target database consisting of IPI 3.54 (75,428 sequences)
plus one decoy per target sequence generated by a random scram-
bling of each tryptic peptide in place. Peptides appearing in more
than one target sequence were scrambled identically each time. The
mass tolerance for precursor ions ranged from –2.1 to �4.1 Daltons.
Modifications were allowed on cysteine (fixed, mass depending on
modification used) and methionine (variable, oxidation). A maximum
of two missed cleavages was allowed. A standard protocol (37) was
employed so that D-[not P]-[S/T]-containing spectra could be
matched against N-[not P]-[S/T]-containing database sequences.
Briefly, we substituted the letter B for N in all N-glycosite motifs in the
database (B commonly denotes “N or D” but in this context denotes
“N presumed to be glycosylated”), then searched with the mass of B
fixed to the mass of D, allowing B to behave as D during the search.
Instances of B were then converted back to N in the search results.
See supplemental Data for complete X!Tandem parameters. It is
important to note that, whereas this computational protocol allows
identification of peptides containing the (possibly de-amidated) N-
glyco motif, it does not confirm whether the site was indeed glyco-
sylated in the sample.

We then constructed a Human Plasma N-Glyco PeptideAtlas
using the same methods as above, but with a PSM FDR threshold
of 0.00002, yielding a protein-level FDR of 0.56%. We chose this
threshold to achieve our goal of a 1% protein FDR after combining
with the 0.86% FDR Non-glyco build described above. It was not
practical to use identical FDRs for the component builds because
even fine adjustments in the PSM FDR for a component build
sometimes resulted in coarse changes in the protein FDR for the
combined build.

Concentration Estimation—Spectral counting was applied to
roughly estimate the absolute concentration of the group represent-
ative for each ProteinProphet protein group in each atlas. Spectral
counting rests on the observation that the PSM count for a peptide
correlates linearly with its molar concentration in the sample (38). We

applied a simplification of the APEX method described by Lu and
coworkers (39). For each protein sequence, i, identified in the Human
Plasma Non-glyco PeptideAtlas, we begin with a ProteinProphet-
adjusted count SCi of all PSMs that map to that protein sequence
(ProteinProphet adjusts the actual PSM count downward according
to the degeneracy of the peptide-protein mappings). SCi is then
normalized by scaling it to the total number of available tryptic pep-
tides. Specifically, we calculate a normalization factor, NFi, by divid-
ing the number of tryptic peptides of length seven or more resulting
from an in silico digestion, NTPi, by 25, which is very roughly the
average number of tryptic peptides per protein sequence across the
whole proteome, and then calculate the normalized spectrum count
NSCi by dividing SCi by that factor:

NFi � NTPi /25 (Eq. 1)

NSCi �
SCi

NFi
(Eq. 2)

We calibrated the concentration scale to the published concentra-
tions of individual proteins. In Fig. 3, we plot NSCi versus concentra-
tions determined via immunoassay and antibody microarray in (40). In
many cases, these concentrations reflect multiple isoforms and/or
cross-reacting proteins.

Using the slope S and y-intercept K from this calibration plot, we
then calculated an estimated concentration Ci for each group repre-
sentative protein sequence with NSCi � � 4 (smaller counts have
been found unreliable for this purpose (41)) in the Human Plasma
Non-glyco PeptideAtlas:

Ci � �NSCi � S� � K (Eq. 3)

Concentrations were converted to mass units (ng/ml) for storage in
PeptideAtlas using molecular weights calculated from amino acid
sequence.

The distance of the standard deviation curve from the trend line at
the center of each decade on the x axis (between 100 and 101,
between 101 and 102, etc.) was recorded as an uncertainty factor for
the normalized PSM counts in that decade, ranging from less than
5� at high concentrations to 13� at low concentrations. See
supplemental Table S2, for complete listing.

To estimate concentrations in the N-Glyco Plasma PeptideAtlas,
we adjusted the technique to account for the N-linked glycopeptide
enrichment. About half of the distinct peptides in this atlas contain the
N-glycosite motif (N - [not P] - [S/T]), indicating a potential N-linked
glycosylation site. Thus, in calculating the normalization factor NFi, we
take into account both the total number of tryptic peptides in each
protein sequence NTPi and the number of peptides containing the
N-glycosite motif, NTGPi:

NFi �
NTGPi � NTPi /25

2
(Eq.1�)

The calibration plot is shown in supplemental Fig. S2. Also shown is
a plot correlating the estimated concentrations in the Non-glyco and
N-Glyco atlases for protein sequences appearing in both (sup-
plemental Fig. S3).

Construction of Combined PeptideAtlas Plasma Build—Finally, we
combined the PSMs and peptides from these two atlases to form a
Human Plasma PeptideAtlas build that includes results from all 91
plasma (or serum) experiments, both nonglycocapture and glycocap-
ture. We ran ProteinProphet on the combined set of experiments and
created protein identification sets as described above. Estimated
concentrations from the Non-glyco atlas were used for protein se-
quences with values in both contributing atlases.

Plasma Proteome Reference Set in PeptideAtlas

10.1074/mcp.M110.006353–6 Molecular & Cellular Proteomics 10.9

http://www.mcponline.org/cgi/content/full/M110.006353/DC1
http://www.mcponline.org/cgi/content/full/M110.006353/DC1
http://www.mcponline.org/cgi/content/full/M110.006353/DC1
http://www.mcponline.org/cgi/content/full/M110.006353/DC1
http://www.mcponline.org/cgi/content/full/M110.006353/DC1
http://www.mcponline.org/cgi/content/full/M110.006353/DC1
http://www.mcponline.org/cgi/content/full/M110.006353/DC1


False Discovery Rate—Mayu, a software tool for estimating false
discovery rates of protein identifications in large-scale data sets (32),
was applied to each component atlas and to the combined atlas to
estimate the protein-level FDR. Mayu implements a refinement of the
common decoy-counting approach, improving accuracy by taking
into consideration the size of the data set, the number of tryptic
peptides in each protein, and proteome coverage.

Manual Validation of Single-PSM Protein Identifications—Three
hundred fifty-seven of the 1999 canonical protein identifications that
emerged after combining the Non-glyco and N-Glyco builds were
supported by only a single PSM (supplemental Table S5). We manu-
ally validated these, judging a PSM positively for each of the follow-
ing: identifications to b- or y-ions or neutral losses for nearly all of the
tallest peaks in the spectrum, at least one series of four or more
consecutive highly abundant fragment ions of the same type (b or y,
preferably y) and charge state, highly abundant fragments corre-
sponding to cleavage N-terminal to proline and C-terminal to aspartic
acid (42), no missed tryptic cleavages, fragments observed above the
noise level for at least 50% of the expected ions, internal positively
charged amino acids to account for precursor charges above �2, and
N-terminal acetylation only for peptides at N terminus of protein. We
discarded 70 PSMs that failed to fulfill these criteria to the extent that,
in our opinion, they had a greater than 10% chance of being incorrect
identifications. So the user can view these 70 discarded identifica-
tions, they were not removed from the component (N-Glyco and
Non-glyco) atlases.

Construction of Combined PeptideAtlas Plasma Build at 5% Pro-
tein FDR—We repeated the above atlas construction procedure to
obtain a combined build with a protein FDR of �5%, as follows. We
applied a PSM FDR of 0.001 to the non-glyco data and a PSM FDR
of 0.0007 to the glyco data, obtaining in each case a build with a Mayu
protein FDR of 4.8%. These were combined to yield a “Human
Plasma FDR 5% PeptideAtlas” build (actual Mayu protein FDR is
4.6%). Single-PSM identifications were not manually validated, and
all that passed our computational criteria were retained in this build.

Empirical Observability Score—For all peptides in each atlas, we
calculated an empirical observability score (43), defined as the ratio of
the number of samples in which a given peptide is observed divided
by the number of samples in which the parent protein sequence is
observed. For example, if peptide X is seen in five different samples
and its parent protein sequence is observed in 10 samples, the
empirical observability score is 0.5.

RESULTS

Size, Confidence, and Completeness of Proteome Refer-
ence Set—The 2010 Human Plasma PeptideAtlas, con-
structed from 91 LC-MS/MS data sets, contains 1929 canon-
ical protein sequences with an estimated protein FDR of
	0.98% (Fig. 4 and supplemental Table S3). As described
under “Experimental Procedures,” the set of canonical protein
sequences is a highly nonredundant protein sequence set
with no protein sequence sharing more than 80% of its ob-
served peptides with any other member of the set. This cri-
terion may exclude closely related protein family members.
The list of 1929 protein identifiers, along with estimated con-
centrations and number of supporting PSMs and distinct
peptides, is given in supplemental Table S6.

Each canonical protein sequence in the Human Plasma
PeptideAtlas is supported by between 1 and 521 distinct
observed peptides (mean � 11, median � 3) and between 1
and 390,366 PSMs (mean � 1720, median � 10). Of the 1929

canonical protein sequences, 1642 are supported by more
than one PSM, and 1313 are supported by more than one
distinct peptide.

High Confidence Identifications—The previous Human
Plasma PeptideAtlas contained 27,801 peptides mapping to
2738 nonredundant proteins (protein redundancy level corre-
sponding roughly to that of the covering list for the 2010
atlas). The 2010 Human Plasma PeptideAtlas contains fewer
identified peptides and protein sequences, but these fulfill
much more stringent criteria. For lack of suitable methods, we
could not accurately estimate the protein FDR of the 2007
build, but, because it was constructed using a very liberal
PSM probability cutoff, its protein FDR is no doubt much
higher than the 1% of the 2010 build. The high confidence
level for the 2010 build, and the ability to estimate it, were
accomplished by the inclusion of more data plus four meth-
odological improvements:

1. Spectral Library Searching—Non-glyco query spectra
were compared against consensus spectra derived from real
spectra, rather than against theoretical spectra. This resulted
in better discrimination between true and false identifications
(24), giving a higher number of identifications at any given
PSM FDR.

2. iProphet—A new component of the Trans-Proteomic
Pipeline, iProphet (27), increased discrimination between true
and false identifications in our atlas builds by modeling five
additional properties of the data beyond those modeled by
PeptideProphet (see Experimental Procedures).

3. PSM FDR Cutoff—For the 2007 build, we used a PSM
probability cutoff of 0.9. Because experiments vary in the
quality of their results, this uniform probability cutoff admitted
a higher proportion of false PSMs for poor experiments than
for high quality experiments. Therefore, here we instead used
a PSM FDR threshold, adjusted to achieve a protein FDR of
about 1% for the combined build. Corresponding probability
cutoffs were one to three orders of magnitude more stringent
than those for the 2007 build, admitting many fewer PSMs per
experiment.

4. Decoy-estimated Protein FDR—By including decoys in
our target database we were able to apply the recently de-
veloped tool Mayu to accurately estimate the protein FDR.

Single-PSM Protein Identifications—Three hundred fifty-
seven single-PSM protein identifications passed our rigorous
computational pipeline. This subpopulation has a Mayu de-
coy-estimated protein FDR of 3.4%. Because decoy analysis
may under-estimate protein FDR (44) and because single-
PSM protein identifications are especially in need of extra
validation, we manually examined all 357 and discarded 70
that we believed had a greater than 10% chance of being
false identifications (see details under “Experimental Proce-
dures”). Assuming that the FDR decreased as a result, we
state that the final protein FDR is 	0.98%. Building a protein
FDR 1% atlas excluding all single-PSM protein identifications
would have included more multiple-PSM identifications, but
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fewer total protein identifications (see supplemental Data,
Choice of Atlas Stringency Level, for analysis).

Estimated Concentrations—Although plasma protein con-
centration is dependent on the individual organism, its dis-
ease state, and its physiological status at time of sample
collection, concentrations of relatively abundant proteins un-
der relatively normal conditions generally do not vary more
than an order of magnitude (45), and it is useful to have a
rough estimate of normal protein concentration for purposes
such as the spiking in of reference peptides for SRM or other
targeted MS measurements. Spectral counting has been es-
tablished as a reliable method for both relative (38, 41) and
absolute (39, 46) quantification of proteins based on LC-
MS/MS data. Comparison of raw spectral counts has previ-
ously been used for relative quantification between plasma
samples (47). Here, following a simplification of the APEX
method of Lu and coworkers (39), we obtain absolute quan-
tification by normalizing spectral counts to adjust for the
number of observable tryptic peptides per protein and by
calibrating to previously measured protein concentrations.

The estimated concentrations are rough estimates and
should not be mistaken as accurate quantitative values. Above
1 �g/ml, they are generally accurate within one to two orders of
magnitude. Sixty-eight canonical proteins not used for spectral
counting calibration appear in the Hortin et al. 2008 review of
abundant plasma proteins (48); the estimated concentrations
for 51% of these proteins are within a factor of 10 of the mean
of the concentration range reported by Hortin et al., and 94%
are within a factor of 100. Of course, there are considerable
uncertainties about these previously published measurements
as well, because of the nature of immunoassays and antibody
specificities. Further, even a precise concentration measure-
ment in a specific sample would not generate a general state-
ment about plasma protein abundances because of the varia-
tion among individuals.

To the extent that these roughly estimated values are ac-
curate, the very large amount of data contributes to the ac-
curacy. Data heterogeneity may also add to accuracy by
allowing averaging over many diverse samples. However, it
may also detract because of the variety of instruments and
settings used. Dynamic exclusion settings, for example, can
be optimized to amplify the spectral counts of low abundance
proteins relative to the counts for high abundance proteins
(49); the mixing of results in PeptideAtlas from experiments
with optimized and nonoptimized settings could reduce ac-
curacy. Obviously, estimated concentrations are sensitive to
the calibration values used; see supplemental Fig. S4, for
illustration.

Concentration is estimated for the group representative for
each protein group (as long as its ProteinProphet-adjusted
PSM count is at least 4). This concentration must be consid-
ered to be shared among all protein sequences in the group,
usually splice isoforms or paralogs. Some atlas data come
from analysis of depleted samples; concentrations for de-

pleted proteins (including those proteins that are inadvertently
removed during the depletion process, see (50)) are underes-
timated. Plasma concentrations for cellular proteins can be
elevated when there is nonphysiological breakage of blood
cells during sample collection and preparation. The sum of the
estimated concentrations for hemoglobin-� and -�, 71 �g/ml,
is close to the 100–200 �g/ml measured in serum in (51),
suggesting that such breakage was minimal.

The estimated concentrations based on spectral counting
of the canonical protein sequences in the Human Plasma
PeptideAtlas span 6.5 orders of magnitude, ranging from
1.6 � 106 ng/ml for serum albumin (P02768) down to 0.5
ng/ml for CEACAM1 (P13688, Carcinoembryonic antigen-re-
lated cell adhesion molecule 1). Serum albumin is known to be
the most abundant protein in plasma with a normal range of
3.4–5.4 � 107 ng/ml (2, 52), but is underestimated in the atlas
because of depletion.

N-linked Glycoproteome—Many proteins of medical inter-
est, such as receptor extracellular portions, transport mole-
cules, and hormones, are N-linked glycosylated. Ninety per-
cent of the 485 canonical protein sequences in the Human
Plasma N-Glyco PeptideAtlas contain the N-glycosite motif
(N - [not P] - [S/T]) and are thus likely N-linked glycoproteins.
However, we emphasize that our computational protocol
does not confirm N-linked glycosylation for any particular
protein and the N[115] notation does not indicate a confirmed
deamidation site. See supplemental Data, Computational
pipeline for N-Glyco atlas does not confirm glycosylation, for
details. The employed glycocapture technique also purifies
some non-glycosylated peptides, presumably through non-
specific binding to the base bead used (Table I).

Eighty-six canonical protein sequences from the Human
Plasma N-Glyco PeptideAtlas, all with estimated concentra-
tions � 25 ng/ml, are not found in the Human Plasma Non-
glyco PeptideAtlas exhaustive set (supplemental Table S7). All
but one of the 125 peptides mapping to these proteins has an
N-glycosite motif. Because glycosylation hinders LC-MS/MS
identification, it is highly unlikely that these peptides would be
identified without the glycocapture protocol, which results in
removal of glycan groups. Indeed, only four are present in the
NIST 3.0 spectral library we used to search the non-glyco
data.

Of the 86 proteins, 31% have no spectra in the NIST 3.0
library and thus could not have been identified by spectral

TABLE I
Prevalence of N-glycosite motif in the component builds of the Human

Plasma PeptideAtlas

Fraction of identifications containing
N-glycosite motif

Non-glyco
PeptideAtlas

N-Glyco
PeptideAtlas

Distinct peptides 3.9% 53%
Canonical proteins 72% 90%
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searching. However, as explained in supplemental Data
Completeness of spectral library searching, we expect very
few additional canonical proteins would be identified were we
to perform database searching on the non-glyco data. There-
fore, we conclude that for nearly all of these 86 proteins, the
reason they are missing from the Non-glyco atlas is because
they are of low abundance in plasma.

Missed Cleavages; Semitryptic and Nontryptic Peptides—
Both SpectraST and X!Tandem were set to allow matches to
peptides with missed cleavages and/or peptides that were not
fully tryptic; see Table II for tallies. Missed cleavages and
nontryptic termini are usually penalized by ProteinProphet;
penalties vary depending on the software’s statistical model-
ing of each data set.

Contribution of Trauma Experiments—Our intention was to
catalog the proteins found in normal plasma; therefore, the
2010 Human Plasma PeptideAtlas almost exclusively includes
experiments on samples originating from individuals with no
known disease state or other unusual condition. Six included
experiments, however, were performed on a pool of six severe
trauma patients plus one healthy subject (20), and we found
that 455, or 24%, of the canonical protein sequences in the
Atlas were observed only in one or more of these experiments
and not in any of the other 85, raising the question of whether
these proteins are trauma-specific. The 455 are all low abun-
dance with at most 145 PSMs per protein; we believe that
most of these are difficult-to-detect proteins present in normal
plasma, rather than trauma-specific proteins, because of the
advanced technology employed in the experiments (depletion
of the 12 most abundant plasma proteins; fractionation into
cysteinyl and noncysteinyl peptides, glyco- and nonglycopep-
tide; separation of each fraction into 30 subfractions using
strong cation exchange, analysis on a Thermo LTQ instru-
ment), which yielded nearly twice the peptide identifications
per experiment when compared with earlier experiments from
the same lab (depletion of only six most abundant plasma
proteins and, in some cases, a less advanced instrument
(Thermo LCQ) employed) (54).

Keratins and Immunoglobulins—Some keratins are com-
mon contaminants in proteomic sample processing, and the
immunoglobulins are a very large class of plasma proteins
consisting of similar interchangeable subunits, so one may
wish to omit these classes of protein sequences from a
plasma proteome reference set. We estimated the number of
canonical protein sequences that belong to these classes
(Table II) by counting those identified as immunoglobulins or
keratins in their descriptions, plus all those in the same protein
group as such a sequence. We counted all keratins, even
those that are internal cytokeratins and not skin contami-
nants. We did not count sequences annotated as immuno-
globulin-like or immunoglobulin-related. Omitting these im-
munoglobulins and keratins leaves 1769 canonical protein
sequences not belonging to these classes.

Evidence for Multiple Splice Isoforms and Single Nucleotide
Polymorphisms—The human section of Swiss-Prot is curated
to contain one entry per protein-coding gene, each with de-
scriptions for known splice isoforms. There is only one Swiss-
Prot entry for which two splice isoforms exist in the canonical
set, and it is only this protein, mannan-binding lectin serine
protease 1, which we confidently claim is present in more than
one splice isoform in human plasma. Twelve additional Swiss-
Prot alternative splice isoforms are noted as possibly distin-
guished; we are less confident that these are present as
distinct isoforms because possibly distinguished protein se-
quences have only a small amount of peptide evidence dis-
tinguishing them from their canonical counterparts. Further,
131 canonical protein sequences come from the IPI or En-
sembl databases, indicating that each includes at least one
observed peptide that is not mappable to any Swiss-Prot
entry. These might represent single nucleotide polymor-
phisms or sequence errors (see IPI00887739 in Complement
C3 group in supplemental Fig. S1 for an example), or protein-
coding genes or splice variants not described in Swiss-Prot.

DISCUSSION

Composition and Completeness of Proteome Reference
Set—Our set of 1929 canonical protein sequences, by far the
largest published so far at this confidence level, includes the
highest concentration proteins as well as nearly complete
coverage of the phosphoproteome described in (55) (details in
Table III). Still, we believe it is far from a complete catalog of
the human plasma proteome. First, our reference set and the
MS-derived lists in Table III are all biased toward proteins that
are readily detectable by MS techniques; proteins missing
from one list are likely to be missing in the others, so coverage
of the lists in Table III is not indicative of complete proteome
coverage.

Other evidence suggests we are not close to full coverage
of even the LC-MS/MS-observable proteome. Mayu analysis
of the 5% protein FDR plasma atlas (see Experimental Pro-
cedures) shows that at least 410 correct identifications are
excluded from the 1% protein FDR Human Plasma Peptide-

TABLE II
Summary of peptide and protein features. Fully-tryptic� both termini
are either tryptic cleavage sites (
K/R�
not-P�) or at the N- or C-termi-
nus of a mapped protein. Some nontryptic termini can be explained by
signal peptide cleavage or other natural post-translational cleavage.

See text for further details

Human Plasma PeptideAtlas peptide and protein features

Distinct peptides (total 20,433)
contain missed cleavage (
K/R�
not P�) 6164 30%
of the 6164, matching Monigatti & Bernd

pattern (53)
4227 69%

not fully tryptic 6180 30%
Canonical proteins (total 1929)

observed only in one or more trauma
experiments

455 24%

immunoglobulins 124 6%
keratins 36 2%
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Atlas by its stringent FDR threshold. Fig. 4, showing the
accumulation of canonical proteins as additional identified
MS/MS spectra that were added to the Human Plasma
PeptideAtlas, also suggests that we are not near complete
coverage. The PPP-I data contributed about 38% of the total
canonical proteins. Growth after PPP-1 was shallow, then
jumped with the addition of experiments employing extensive
depletion and fractionation and high mass accuracy instru-
ments (19, 20). The curve will asymptotically approach the
total number of proteins detectable with the techniques used,
but is not yet nearing that limit.

In 2008, Schenk et al. published a plasma proteome refer-
ence set (16) of comparable confidence to ours (see
supplemental Data, Comparison of confidence level with
Schenk et al., for details). Of the 697 nonredundant, nonim-
munoglobulin protein identifiers in (16), 51 are in our com-
bined protein sequence database, but not in the Human
Plasma PeptideAtlas exhaustive set, meaning that we identi-
fied no peptides for them (see supplemental Table S8). If
the Schenk et al. data were added to the Human Plasma
PeptideAtlas, most or all of these would appear in the result-
ing canonical list. This supports our conclusion that more
data, preferably from different laboratories using different
sample sources, depletion techniques, and preparation tech-
niques, will continue to add significant numbers of high con-
fidence protein sequences to the human plasma proteome.

Because we searched the nonglycocapture data against a
spectral library and not against a sequence database, we only
identified peptides that had been previously seen in LC-
MS/MS experiments and included in the NIST spectral library.
However, the NIST library is extremely comprehensive, in-
cluding most of the human data in the PeptideAtlas (from
plasma and many other sources), so nearly all human-derived
spectra identifiable with a sequence search engine with
standard parameters will be identified with our spectral library

search. Very few, if any, canonical proteins would be added to
the Atlas were we to incorporate sequence database search
results (see supplemental Data, Completeness of spectra
library searching for analysis).

Multi-tiered Protein Identifications: Alternatives for Compar-
ison of Data Sets—As described under “Experimental Proce-
dures,” we created our exhaustive identification set by map-
ping all identified peptides to a combined protein sequence
database containing many sequences repeated identically or
with only slight variations. Removing redundancy from such a
set is always a problem in interpreting proteomics data, and
no standard methods have been agreed upon.

In considering this issue, it is critical to understand that
virtually no protein identification list for a given data set can be
considered definitive. Once one eliminates exact duplicates,
the process of removing redundancy necessarily involves
choices that are somewhat arbitrary, as described in (58), and
is at odds with the preservation of identifications consistent
with the data. In most cases, a highly nonredundant list is
necessarily a model or example list, each entry of which
may represent several proteins that are as likely, or almost
as likely, to exist in the sample. In particular, we emphasize
that we do not claim to have definitive evidence for any
of the specific isoforms in our canonical set; rather, we
claim that, for each protein sequence in the set, there exists
either that protein or a closely related one in at least one of
the samples.

For some purposes, such as estimating the number of
distinct proteins revealed by the data, a highly nonredundant
protein identification set is desired. For other purposes, such
as comparison with a nonredundant list for another proteome,
filtering by molecular weight or pI, or selection of peptides for
SRM experiment design, redundancy is desirable. As de-
scribed under “Experimental Procedures,” we created several

TABLE III
PeptideAtlas coverage of published protein lists. Percentages in column B are relative to numbers in column A

Plasma protein identification list Total proteins
(A) In PeptideAtlas combined
protein sequence databasea

(B) In Human
Plasma

PeptideAtlas
exhaustive set (of
those in column A)

Hortin et al. highly abundant plasma proteins (48) 150 126 126 100%
Kuzyk et al. moderate/high concentration plasma proteins

reproducibly detectable by LC-MRM/MS analysis of whole
tryptic digests; nearly all reported as potential disease
markers (56)

45 45 45 100%

Carrascal et al. LC-MS/MS derived plasma phosphoproteins
with peptide identified by �1 search engine (55)

44 44 43b 98%

Schenk, et al. LC-MS/MS derived plasma proteins (non-
immunoglobulin) (16)

697 554 503 91%

Polanski and Anderson potential cancer biomarkers (57) 1261 1054 326 31%
a Swiss-Prot 2010–04 � IPI v3.71 � Ensembl v54.37.
b A single spectrum for the missing phosphoprotein was identified by our computational pipeline, but discarded during our manual validation

process.
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different protein sequence sets that could be used, alone or in
combination, for different purposes.

Multitiered schemes are not novel and have been imple-
mented in many proteomics studies. For example, the core
data set for PPP-I contained 3020 protein sequences, but
alternative threshold criteria were used to generate several
other sets including a set of 889 protein sequences using very
restrictive criteria with an adjustment for multiple hypothesis
testing (6), roughly analogous to our canonical set, and an
unintegrated set of 15,710 protein sequences based on only a
single peptide, roughly analogous to the exhaustive set de-
fined here.

With the current work, we make two contributions in this
area. First, we present Cedar, a protein identification classifi-
cation scheme based on the freely available ProteinProphet
and applicable to any search results that can be converted to
mzML (59) or mzXML (23). Protein identifications generated
for different data sets using Cedar can be easily and mean-
ingfully compared against each other. Although software is
not yet available to automate Cedar, all steps except for the
manual validation of single-PSM identifications are clearly
defined and reproducible, and we propose Cedar as a stan-
dard for the community, including the HUPO Human Pro-
teome Project.

Second, we assert that when evaluating the overlap be-
tween the protein identifications for two proteomics data sets,
it is essential to map to the same sequence databases and to
compare the highly nonredundant (Cedar’s canonical) set for
one against the maximally redundant (Cedar’s exhaustive) set
for the other. Otherwise, the overlap will be under-reported.
For example, Schenk et al. reported that 242 of their 697 high
confidence identifications were found on the HUPO high-
confidence list. We compared their identifications against the
exhaustive set for an atlas we built from most of the HUPO
PPP-I data (see “Results”, Single-PSM Protein Identifications)
and found an overlap of 362 identifications, which is 50%
more.

Spectral Counting—Spectral counting has allowed us to
provide rough estimates for protein concentrations in the
Human Plasma PeptideAtlas down to 0.54 ng/ml, but even
lower estimated concentrations are achievable. By including
about 100 times as many PSMs as currently included, we
could reach 7 � 10�3 ng/ml, the lowest concentration meas-
ured by antibody-based methods in (40). See supple-
mental Data, Completeness of spectral counting, for analysis.

Estimated concentrations in ng/ml, along with uncertainty
factors, are now available in PeptideAtlas. Again, these are
rough estimates and should not be mistaken as accurate
quantitative values. Experimentally measured concentrations
from (40), (57), and (Anderson, N. L. (2007) private communi-
cation) are provided as well. We plan to apply this same
spectral counting method to atlas builds for other subpro-
teomes such as human urine, mouse plasma, and various
organ or cell type data sets that we acquire. Our goal is to

develop a quantitative PeptideAtlas reflecting protein expres-
sion in multiple organs, cell types, and biofluids in health and
disease.

Uses of the Human Plasma Peptide
Atlas Biomarker Discovery—Polanski and Anderson in 2006 (57)

published a review of candidate cancer biomarkers listing 1261 pro-
teins believed to be differentially expressed in patients with various
cancers. Literature search revealed only 274 to be reported in plasma,
but 326 appear in the Human Plasma PeptideAtlas exhaustive set
(Table III), skewed toward lower concentrations. Those identified in
(46) as “high priority” for biomarker development (about one-third of
the 326) are listed in supplemental Table S9.

Experiment Design for Targeted Proteomics—When a protein is
observed in a sample that is analyzed with LC MS/MS techniques,
some of the protein’s peptides are observed many times, whereas
others are not observed at all, despite being in the observable mass
range and otherwise having attributes consistent with MS analysis
(60, 61). Several algorithms that attempt to predict observability
based on sequence attributes have been put forward (39, 60, 61);
these are heavily influenced by the data with which they are trained.
As noted under “Experimental Procedures”, for all peptides in the
Human Plasma PeptideAtlas, we calculated an empirical observability
score that does not rely on prediction algorithms; however, it is highly
dependent on MS data collection parameters, including dynamic
exclusion settings, as in (49).

Because shotgun-style experiments of complex samples will al-
ways miss many proteins, especially low concentration proteins, a
targeted approach in which the mass spectrometer selects only pep-
tides contained within specific proteins of interest should be more
successful, reproducible, and time efficient. Using the PeptideAtlas
web interface, one can select peptides based on the empirical ob-
servability score and other attributes, such as number of observa-
tions, number of protein mappings, missed cleavages, semitryptic, or
multiple genome locations, and present these as an inclusion list for
the mass spectrometer.

PeptideAtlas includes several other features to support SRM
experiment design. For peptides belonging to proteins not yet
observed in PeptideAtlas, observability scores based on sequence
attributes are calculated. When multiple spectra exist for the same
precursor ion, they are combined to generate a consensus spec-
trum that can be visualized by the user. Transition lists can be
generated automatically from these consensus spectra according
to user-specified rules. For absolute protein abundance measure-
ments, the estimated protein concentrations described above allow
one to spike in synthetic reference peptides at concentrations
similar to those expected in the sample. These features and others
are described in (43). Finally, we and others are in the process of
systematically generating reference fragment ion spectra from syn-
thetic peptide libraries using the triple quadrupole instruments used
for SRM measurements and we will make these publicly accessible
as verified transition sets (63, 64).

CONCLUSION

PeptideAtlas is an integral part of the ProteomeXchange
infrastructure for HUPO initiatives and other worldwide data
submissions (figure published in (65)), together with the Pro-
teomeCommons.org Tranche distributed file-sharing system
(66) and the EBI PRIDE (67) database. PRIDE contains the
investigators’ original data sets; PeptideAtlas consolidates
the raw data of individual studies into re-analyzed proteome
reference sets. A significant aspect of PPP-II is the establish-
ment of a standard method for the submission of data to the
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ProteomeXchange consortium. It is the policy of PPP-II that all
published plasma data be submitted to Tranche or PRIDE,
from which it will be stored in Tranche and incorporated into
the PeptideAtlas.

The PeptideAtlas approach described here provides a frame-
work for the continued analysis of human and other complex
proteomes. Soon, MS/MS data interpretation based on trans-
lated genomes will be replaced by rich spectral libraries derived
from both natural and synthetic peptide information, which out-
perform current database searching strategies. Already, there is
a complete spectral database for the entire yeast proteome (64)
and mouse and human are being completed (Deutsch et al., in
preparation; Kusebauch et al., in preparation).

The 2010 Human Plasma PeptideAtlas, a comprehensive
collection of high-confidence peptide and protein identifica-
tions, contains well over twice as many protein sequences as
any previous collection at a similar confidence level. With
estimated concentrations and a multitiered protein identifica-
tion scheme, it is a useful resource for biomarker discovery
and SRM experiment design. Peptide identifications, protein
identifications, estimated concentrations, and raw data in
mzXML (23) format are all offered freely to the public at
www.PeptideAtlas.org.
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